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Abstract. Human-AI collaboration has increasingly impacted domains
such as education, medicine, creative arts, and complex problem-solving,
where differentiated interactions greatly influence outcomes. Effective
collaboration hinges on the capability of Large Language Models (LLMs)
to accurately interpret subtle contextual hints provided by humans, un-
derscoring the need to understand how contextual information influences
LLMs’ responses. To address this, herein, a structured benchmark is in-
troduced for evaluating the effect of contextual hints on LLMs’ perfor-
mance, providing sample data and code to enable reproducible exper-
imentation. Experimental findings support the effectiveness of contex-
tual hints, demonstrating these significantly shape the complexity and
structural variation in model-generated outputs. Specifically, prompts
enhanced by hints yield more detailed, paraphrased responses that di-
verge lexically and structurally from concise ground-truth answers. How-
ever, traditional similarity metrics often underestimate the value of these
contextually enriched responses due to their lexical diversity, indicating
a discrepancy between metric-based evaluations and human perceptions
of quality. These insights highlight the importance of adopting more
context-sensitive evaluation methods to better capture the quality and
semantic richness of collaborative human-AI outputs.

Keywords: Large Language Models · Prompt engineering · Contextual
hints · Performance evaluation · Co-creation.

1 Introduction
Large Language Models (LLMs), such as OpenAI’s (chat)GPT3, Anthropic’s
Claude4, Google’s Gemini5, Meta’s LLaMA6 to name but a few, have ushered a
new era in successfully managing a vast breadth of tasks such as text generation,
language understanding, arithmetic reasoning, contextual comprehension, as well
as unprecedented capabilities in Natural Language Processing (NLP) [6].
3 https://chatgpt.com/
4 https://claude.ai/
5 https://deepmind.google/technologies/gemini/
6 https://www.llama.com/
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LLMs’ initial focus was on NLP tasks, though latest research has also ad-
dressed their perception and ability to respond with multimodal information in
order to complement their text-modalities [13]. Accordingly, LLMs’ input and
output extended from text to other types such as video, image, and audio and
thus their domain of usage grew significantly, beyond Computer Science, to fields
such as Biology, Psychology, Physics, Political Science, Law, Art, History and
many others [29]. It is thus only natural that their ability for complex creative
tasks [12] has been used collaboratively with human creativity for content gen-
eration, education, programming, and creative arts, among others [43].

The majority of publicly available LLMs utilize a passive interaction mode
wherein users provide, mostly textual, instructions, or prompts, in order to elicit
the activation of the LLM and guide it in generating the desired output response
[39]. Accordingly, the activity of “prompt engineering” evolved in order to assist
in the creation of appropriate prompts aimed at improving LLMs’ accuracy,
coherence, and factual consistency [9]. Evidently, prompting LLMs is a natively
co-creating endeavor of, admittedly, varying degree given the Standard Definition
of creativity as “the production of novel and useful ideas and products” [41].

For this co-creating process, a plethora of detailed human-AI interactions
have been proposed [1] but the most readily available to users, and commonly
used scenario, is the aforementioned prompting or guiding model’s output [11].
The traditional multi-step method of training LLMs has led research on prompt
engineering to utilize context as an effective way to increase performance [7],
especially for nuanced queries. Still, research on assessing how LLMs integrate
subtle contextual cues, such as hints, and how these cues influence the structure,
content & semantic alignment of the model-generated outputs is still scarce.

1.1 Motivation & Contribution
The motivation behind this work lies in the growing adoption of LLMs across
domains wherein Human-AI Co-creation events take place that demand high
interpretability and contextual sensitivity. For example, in educational settings,
medical communication, problem solving, and almost all artistic expression, sub-
tle phrasing and domain-aware cues can drastically alter the relevance and clarity
of model outputs. Understanding how models respond to such contextual ele-
ments is thus crucial for designing effective prompts and evaluation pipelines.

Thus, in order to address the aforementioned challenges, the key contribu-
tions of this work are:

– Introduction of a structured benchmark that evaluates the influence of con-
textual hints on LLMs’ performance,

– Provision of sample data and programming code for the reproducibility of
the proposed experimentation, and

– Experimentation results that strengthen the argument for the advantages of
using contextual information in prompt engineering.

The remainder of the work is organized as follows: Section 2 details the
related work and background information needed to contextualize the work.
The proposed benchmark framework for experimentation is detailed in Section
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3, while the results and related discussion on the evaluation of the proposed
method is presented in Section 4. Finally, the work is concluded in Section 5.

2 Background & Literature Review

2.1 Large Language Models

LLMs have redefined the landscape of NLP, with architectures such as GPT
(Generative Pretrained Transformers) [4], BERT (Bidirectional Encoder Repre-
sentations from Transformers) [10], and T5 (Text-to-Text Transfer Transformer)
[31] setting the foundation for modern generative AI.

These models are pretrained on massive corpora of text, acquiring general
understanding of language enabling them to perform various tasks with minimal
supervision. Scaling in parameters and data has proven critical in improving
performance, as illustrated in the transition from GPT-2 to GPT-3 [4].

A key attribute of LLMs is their ability to integrate context into their input,
not only at the sentence level, but across paragraphs and documents. Contextual
understanding significantly influences output quality, particularly in generative
tasks such as question answering, summarization, and text completion [21].

Recent studies [46] suggest that even subtle variations in prompt phrasing
or the presence of contextual hints can lead to substantial changes in the qual-
ity, coherence, and accuracy of outputs. However, these effects remain largely
underexplored in existing evaluation frameworks.

Despite their strengths, LLMs still exhibit limitations, including instability
in output, incomplete semantic understanding, and a lack of transparency in
decision-making processes [48]. Understanding how LLMs process contextual
hints is essential for designing more robust prompting strategies and a central
focus of this work.

2.2 Prompting Techniques
Prompting has become a core interface for interacting with LLMs, functioning
as a method for task specification through natural language. Rather than relying
exclusively on fine-tuning, prompting allows users to elicit desired outputs by
crafting the input strategically [4].

The main prompting paradigms include: Zero-shot prompting, where no ex-
ample is given, [18]; One-shot prompting, where a single example is provided,
[14]; Few-shot prompting, where multiple examples illustrate the task [4].

These methods revealed the capacity of LLMs for in-context learning, where
task behavior is inferred from the examples provided in the prompt. This has led
to the rise of prompt engineering—the process of optimizing prompts to guide
models more effectively [34]. Practices in prompt engineering include role-based
instructions, rephrased questions, explicit definitions, and inclusion of relevant
background knowledge. Among these, contextual prompts—that is, prompts en-
riched with indirect or task-relevant information—have shown promise in im-
proving reasoning, coherence, and factual accuracy [17]. Yet, the influence of
hints or context is difficult to quantify systematically, especially in the absence
of benchmarks designed to isolate and evaluate such effects. This gap motivates
the design of new evaluation strategies, such as the one proposed in this study.
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2.3 Benchmarking in NLP
Benchmarking is crucial for assessing and comparing NLP models. Standard
benchmarks such as GLUE [42] and SuperGLUE [32] test general language un-
derstanding across a suite of tasks, while SQuAD [32] focuses on reading com-
prehension. More recent benchmarks, such as BIG-bench Hard [15], its prede-
cessor BIG-bench [37] and HELM [19], aim to assess the broader capabilities
and responsible use of LLMs. However, most benchmarks rely on fixed prompt
structures, and seldom account for contextual variation or hint sensitivity. This
limits our ability to evaluate how prompt phrasing or contextual enrichment
affects model performance.

2.4 Comparison Methods

Evaluating LLMs’ outputs, especially in generative tasks, requires more than
simple string matching. Traditional metrics such as BLEU [26], ROUGE [20],
and METEOR [2] focus on n-gram overlap and are useful for structured tasks
like translation. However, they often fall short in open-ended generation where
semantically valid outputs may diverge in wording.

To overcome these limitations, semantic-based metrics have been introduced.
BERTScore [45] uses contextual embeddings to compute similarity between gen-
erated and reference texts, aligning more closely with human judgments. Mover-
Score [47] and BLEURT [36], further enhance semantic sensitivity using pre-
trained language model embeddings and learned scoring functions.

Despite these advances, human evaluation remains essential, especially for as-
sessing aspects like fluency, factual correctness, and relevance to context. There-
fore, this study adopts a hybrid evaluation framework, combining automatic
semantic similarity scores with targeted human assessment to analyze the influ-
ence of contextual hints. The challenge of comparing short text segments has
also been addressed by Metzler et al. [23], who investigated lexical matching,
stemming, and query expansion techniques to improve similarity estimation in
sparse, context-poor environments. Their analysis emphasizes the limitations of
conventional metrics when applied to brief inputs and highlights key trade-offs
between effectiveness and computational efficiency. These findings support the
need for hybrid and adaptive evaluation strategies in domains involving short,
informative responses such as the ones explored in our study.

2.5 Metrics Analysis
To comprehensively evaluate the alignment between LLMs’ answers and the
ground-truth, we employed four similarity metrics: Cosine Similarity, Jaccard
Similarity, Edit Distance Similarity, and Word Overlap Similarity. Each met-
ric captures a different dimension of similarity—semantic, lexical, structural, or
token-level—and offers unique insights into the behavior of large language models
under varying prompting conditions. Together, they enable a multifaceted view
of textual correspondence that balances precision with interpretive flexibility.

Cosine similarity [35] is a metric that evaluates how similar two vectors
are in terms of direction, regardless of their magnitude. It is computed as the
cosine of the angle between two non-zero vectors A and B:
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cosine similarity(A, B) = (A · B) / (||A|| ||B||) where A·B is the dot prod-
uct of A & B and ||A||, ||B|| their Euclidean norms. The result ranges from -1
(completely opposite) to 1 (identical). In text analysis, cosine similarity is com-
monly used with TF-IDF vectorization to assess the semantic alignment between
documents or responses without being affected by their length.

Jaccard similarity [40] measures the proportion of shared elements between
two sets. For two token sets A and B, it is defined as:

jaccard similarity(A, B) = |A ∩B|/|A ∪B|
This metric produces a score between 0 and 1, where 1 indicates complete

overlap and 0 no shared tokens. Jaccard is particularly sensitive to differences
in lexical choice and penalizes paraphrasing or verbosity. It is often used in
text comparison tasks to quantify literal word overlap, making it useful when
structural fidelity is important.

Edit distance similarity quantifies how different two strings are by count-
ing the minimum number of operations, insertions, deletions, or substitutions,
required to transform one string into another. A widely used version of this is
the Levenshtein distance. To express it as a similarity score, we use the nor-
malized form: Chakraborty et al. [5] offer an efficient approach for computing
edit distance in large-scale similarity search scenarios, grounding the metric in
scalable NLP applications. Khalid et al. [16] further extend this by proposing
parallel computation strategies to overcome performance bottlenecks in string
similarity joins. McCauley [22] explores the use of edit distance in combination
with locality-sensitive hashing for approximate nearest neighbor search, demon-
strating its algorithmic versatility in large datasets.

edit similarity(A, B) = 1 - (edit distance(A, B) / max(len(A), len(B)))
This produces a value between 0 (completely different) and 1 (identical). Edit

distance is sensitive to word order and syntactic structure, making it valuable
for detecting rephrasings or syntactic variation in model outputs. In text com-
parison, it serves as a structural alignment metric that complements lexical and
semantic approaches.

Word Overlap Similarity is a set theoretic, asymmetric similarity measure
defined as Overlap(A,B) = |A ∩ B|/min(|A|, |B|), where A and B are sets of
words. It quantifies shared elements relative to the smaller set, yielding values in
[0,1]. Unlike symmetric measures (e.g. Jaccard), it emphasizes inclusion, making
it suitable for tasks where containment is key. It does not satisfy metric space
properties (e.g. symmetry, triangle inequality), classifying it as a proximity—not
distance—measure. Its computational simplicity suits applications like document
clustering and semantic filtering. It has effectively been applied in hierarchical
clustering [30] and gene function comparison [24].

3 Methodology

This study employed a systematic evaluation framework to examine how con-
textual hints affect the performance of large language models (LLMs) in answer-
ing domain-specific questions. The models under investigation were OpenAI’s
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ChatGPT-3.5 and GPT-4o. To enable a structured comparison, we constructed
two prompting conditions: (1) No Hint, where each model received only the ques-
tion prompt; and (2) With Hint, where additional contextual cues were provided
to guide the model’s reasoning.

The dataset comprises of 99 questions from the textbook “Biology: The Unity
and Diversity of Life” [38]. These questions span multiple categories—multiple-
choice, open-ended, data-driven, and critical-thinking—and were selected from
the first nine chapters. Each question was normalized and aligned with its respec-
tive correct answer (or ground-truth), allowing consistent baseline for evaluation.

To support high-throughput querying with the aimed at OpenAI’s LLMs,
a custom PHP script was developed to manage API communications, enforce
model alternation, and log structured responses. The script accepted a structured
CSV file as input, containing question IDs, ground-truth answers, and optional
hints. It dynamically constructed prompts based on the selected condition (No
Hint or With Hint) and used a parameter switch to alternate between GPT-3.5
and GPT-4o. For each query, it executed a POST request to OpenAI’s API,
implemented retry logic for handling transient failures, and logged both request
and response data in structured JSON format. Metadata such as model version,
prompt condition, timestamps, and response tokens were recorded to ensure
full reproducibility of the experimental process. This infrastructure was used to
query both GPT-3.5 and GPT-4o for all 99 questions under both prompting
conditions, producing four sets of model-generated responses.

The dataset required several corrective preprocessing steps. These included
the standardization of column names (e.g., Answer-ground-truth, gpt3.5withhint),
filtering out empty or malformed model responses, and the conversion of incon-
sistent encoding. Boolean fields indicating correct answers were initially used for
exact match scoring but were deemed too restrictive. As a result, we extended
our evaluation with four similarity metrics: Cosine Similarity (semantic overlap),
Jaccard Similarity (lexical set overlap), Edit Distance (string-based structural
similarity), and Word Overlap (non-stopword lexical intersection).

These similarity scores were computed using custom Python scripts, leverag-
ing libraries such as Gensim [33] (for vector representation and semantic similar-
ity), scikit-learn [27] (for TF-IDF modeling and cosine similarity computation),
and standard Python routines for string normalization and comparison. Prior to
applying the lexical similarity metrics (Jaccard, Edit Distance, Word Overlap),
all text responses were tokenized. Tokenization refers to the process of splitting
a text string into smaller units called tokens—typically words. This step allows
comparisons to be performed on a per-word basis, enabling fair computation
of overlap and similarity. For instance, the sentence ‘The mitochondria is the
powerhouse of the cell’ is split into tokens such as ‘the’, ‘mitochondria’, ‘is’,
‘the’, ‘powerhouse’, ‘of’, ‘the’, and ‘cell’. Tokenization also serves to normalize
word forms and remove punctuation, making the downstream metrics more re-
liable. In our implementation, tokenization was performed using the standard
word_tokenize function from the NLTK library in Python [3], which splits text
into linguistically meaningful units. This approach was chosen for its robustness
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in handling punctuation, contractions, and multilingual content. Cosine Similar-
ity was computed using TF-IDF vectors [28] to measure semantic alignment be-
tween model output and ground-truth, capturing shared terms’ relevance rather
than just lexical overlap. Jaccard Similarity treated answers as sets of words
and calculated the ratio of intersection over union, providing a stricter view of
shared vocabulary. Edit Distance Similarity quantified the proportion of shared
character sequences through the normalized Levenshtein ratio. Finally, Word
Overlap Similarity counted the ratio of shared non-stopword tokens, offering a
more lenient lexical alignment perspective. For semantic comparison, vector rep-
resentations of the text were created using TF-IDF models. Lexical comparisons
were implemented with token-based set operations and string matching utilities.

Moreover, and in order to further quantify the similarity of models’ out-
puts and ground-truth answers, two more similarity metrics where utilized: the
“LLM” and “Human”. The “LLM similarity metric” refers to the evaluation of a
model’s output and ground-truth answer given a prompt [49] (with or without
the contextual hint) by an LLM. The LLM was prompted to include a numerical
/ percentage of similarity as a reply, in addition to a textual explanation for the
evaluation. This process’s aim was to: initially, provide a higher-level of evalua-
tion for models’ outputs and ground-truth answers, and also to test the ability
of LLMs in doing so in comparison to human experts. The “Human similarity
metric” refers to human intelligence experts that evaluated the the similarity of
models’ outputs and ground-truth answers.

The architecture of the full proposed framework is presented in Figure 1.

Question
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GPT-
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Fig. 1. The architecture of the proposed framework.

To support metric comparability, all similarity values were normalized us-
ing min-max scaling prior to aggregation. This standardization allowed us to
analyze relative performance differences across models and prompt types us-
ing unified scales. The finalized dataset included raw and normalized similarity
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scores, ground-truth alignment, model outputs, and metadata for reproducibility
and further statistical processing.

4 Experimental Evaluation

4.1 Experimental Setup

All algorithms described herein have been implemented using PHP and Python
programming languages. The personal computer specifications used for conduct-
ing the experiments included an Intel Core i7-6700 CPU 3.40GHz with 16.0 GB
RAM, 64-bit operating system and x64-based processor.

In order to support the reproducibility of the experimentation, data samples
(due to copyright issues) and programming code for the execution of the exper-
iments presented herein are available in https://github.com/pgratsanis.

4.2 Evaluation Results
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Fig. 2. Average similarity scores between model outputs and ground-truth answers for
varying LLM models and prompting conditions.

In order to test the effect of contextual hints in LLMs’ prompts, the average
similarity scores between model outputs and ground-truth answers under the two
prompting conditions, with and without Hint, where calculated. Metrics were
averaged across both GPT-3.5 and GPT-4o for a high-level overview. Detailed
model- & condition- specific analyses are presented in Figures 2, 3 and 4.

The results received, as shown in Figure 2, indicate a comparable perfor-
mance across all four combinations of LLM model and contextual condition
alternatives. Clearly, all combinations present high degree of similarity for the

https://github.com/pgratsanis
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“LLM similarity metric” and “Human similarity metric”, a significant dip in per-
formance for the Cosine, Jaccard and Edit distance measures, and again a sharp
rise in performance for the Word Overlap metric.
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Fig. 3. Comparison between performance without and with contextual hints for GPT-
3.5.

This pattern indicates a number of interesting phenomena, namely the ef-
fect of LLM model, contextual hints, and similarity measure utilized. The LLM
GPT-3.5 presented better performance than GPT-4o as per the Cosine, Jac-
card, and Edit distance metrics, marginally better for “LLM metric”, while for
metrics “Human”, and Word Overlap clearly worse. GPT-4o presented the best
performance of the experimentation for the “Human similarity metric”, though
GPT-3.5 with contextual hints was marginally less effective. The metrics Word
Overlap and “LLM”, especially for GPT-4o presented comparable performances.
GPT-3.5’s performance without contextual hints was significantly worse than
with hints for the “Human similarity metric” and Word Overlap, while the op-
posite for the Cosine, Jaccard, and Edit distance metrics. The performance of
GPT-4o with or without contextual hints was closely comparable for all metrics.
Accordingly, GPT-3.5 tended to score higher in lexical metrics without hints,
while GPT-4o maintained more consistent performance regardless of prompting.

Figure 3 presents a comparison between average performances of the GPT-3.5
LLM model without and with the use of contextual hints, for varying similarity
measurements. The results obtained indicate that the existence of contextual
hints did not affect the perceived similarity for the “LLM metric” while the op-
posite was true for the “Human similarity metric” presenting a differentiation of
approx. 15 percentage points. The results also make evident that the discrepancy
between usage or not of contextual hints is even more significant for the Jaccard
and Edit distance measures, reaching a reduction of performance for the use of
hints approx. 17 and 22 percentage points, respectively.



10 P. Gratsanis, et al.

-5

-4

-3

-2

-1

0

1

2

3

4

LLM Human Cosine Jaccard Edit distance Word
Overlap

D
if

fe
re

n
ce

 in
 d

e
gr

e
e

 o
f 

 a
vg

 s
im

ila
ri

ty

Similarity metric

Fig. 4. Comparison between performance without and with contextual hints for GPT-
4o.

Figure 4 presents a comparison of average performances of GPT-4o model
without and with the use of contextual hints, again for varying similarity mea-
surements. The results obtained differ significantly from GPT-3.5 LLM mostly
in terms of absolute values, while the trend is mostly similar for both mod-
els. Herein, the existence of contextual hints marginally affected positively the
perceived similarity for the “LLM”, “Human” and Word Overlap metrics while
marginally affected negatively for the Cosine, Jaccard, and Edit distance metrics.

4.3 Discussion

In general, the results received indicate that hints encourage more detailed and
informative answers that may deviate structurally or lexically from the ground-
truth, but still retain relevant content. Notably, the drop in Edit Distance and
Jaccard similarities suggest increased variation in expression, while the modest
drop in Cosine Similarity highlights a more nuanced semantic drift. These out-
comes support the hypothesis that traditional alignment-based metrics may not
fully capture the benefits of guided prompting. To better understand the role of
each similarity metric in this evaluation, we consider their individual behaviors:

Cosine Similarity measures semantic alignment based on TF-IDF vector
representations. Our results indicate a decline in cosine based similarity when
hints are provided. This may suggest that although hinted responses include
richer language, these sometimes introduce semantic drifts away from the concise
ground-truth phrasing.

Jaccard Similarity scores consistently decreased with the use of hints. This
metric, sensitive to exact token overlap, penalizes lexical variation. Since hints
encouraged verbose and paraphrased responses, exact token overlap diminished.
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Edit Distance Similarity, based on character-level transformations, also
declined with hints. Its sensitivity to syntactic divergence reflects how hinted
answers, while potentially more informative, often adopt structurally distinct
phrasings compared to the ground-truth.

In contrast to the above, Word Overlap Similarity’s performance in-
creased with hints. This suggests that hinted responses, although more lexically
diverse, still preserved a larger set of content-relevant non-stopword tokens. This
may indicate stronger topical alignment, even if exact structure varies.

Together, these results reveal that traditional lexical metrics may underesti-
mate the value of responses conditioned on hints [36]. Although classic measures
penalize paraphrasing or elaboration, such responses may reflect deeper under-
standing, a distinction more faithfully captured by semantic metrics such as
cosine similarity. While hints improve Word Overlap, they tend to reduce se-
mantic and syntactic alignment according to traditional metrics. This suggests
that hinted responses, though potentially richer, diverge in form from canonical
answers. It also points to the limitations of classic metrics in capturing quality
when responses are meaning-equivalent but lexically diverse.

Notably, these trends were observed in both GPT-3.5 and GPT-4o, although
preliminary results suggest that GPT-4o maintains higher overall consistency
with ground-truth [25], as also supported in OpenAI’s official evaluations, par-
ticularly in semantic similarity. Future versions of this study will expand on these
inter-model comparisons.

Our findings suggest that hints can shift the model’s reasoning strategy,
which allows for a more nuanced understanding of prompt-conditioned genera-
tion. This invites further research into context-sensitive evaluation methods that
align better with human judgment, and collaboration.

The findings also underscore a broader theoretical implication: classic lexi-
cal similarity metrics, though widely used, may systematically undervalue high-
quality, paraphrased responses emerging from hints. This reveals a misalignment
in metric-based and human-perceived quality and reinforces the need for evalu-
ation frameworks incorporating semantic understanding and context sensitivity.

Beyond general trends, domain-specific linguistic features in Biology, such as
polysemous terms (“expression”, “culture”) and hierarchical concepts, were found
to affect LLM performance. Models often misinterpreted such terms without
hints, while contextual prompts improved alignment with the intended meaning,
especially in specialized domains like molecular biology and taxonomy [44]. Hints
also supported more structured reasoning in taxonomy and cellular processes.
However, some factual errors persisted, suggesting that, while hinting enhances
semantic relevance, domain expertise remains a limitation. These observations
align with findings from educational evaluations of LLMs, where terminology-
heavy biology questions exposed weaknesses in semantic precision and consis-
tency, particularly in high-application tasks [8]. Altogether, they highlight the
value of context-aware prompting in terminology-heavy fields.
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5 Conclusion

Human-AI collaboration across domains such as education, medicine, creative
arts, and complex problem-solving, where nuanced interactions significantly in-
fluence outcomes, has gained increasing attention. Effective such collaboration
relies heavily on the ability of LLMs to accurately interpret and respond to sub-
tle contextual hints provided by human partners. Thus, gaining insights into how
these models integrate contextual information into their responses is crucial for
enhancing the synergy between human creativity and AI assistance.

Key findings herein indicate that contextual hints influence the complexity
and structure of LLMs’ responses. Hinted prompts may produce more detailed
and paraphrased outputs, divergent lexically and structurally from ground-truth
responses. Traditional similarity metrics often undervalue these richer, contextu-
ally-driven answers, highlighting a gap between metric-based assessments and
human-perceived quality, particularly in nuanced semantic contexts.

Future work includes exploring the development of advanced evaluation met-
rics better aligned with human judgment and collaboration, comparative studies
across diverse academic and creative domains in order to deepen understanding
of how contextual hints can be tailored for effectiveness, and investigation of
prompting strategies that may also improve human-AI collaborative processes.
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